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We consider the problem of finding the three-dimensional supersonic flow
of an ideal gas in the vicinity of a curve L, at points of which there
occurs & break in the streamlines. The sclution of the three-dimensional
equations of gas motion is sought in a special coordinate system in the
form of a series in one of the variables with coefficients depending
upon the other two variables. For the determination of the coefficients
we obtain a recurrent system of ordinary differential equations.

The equations for the zero-order terms in the series have two solu-
tions, which correspond to flows with expansion or compression in the
vicinity of the curve L.

In the case when L is a circumference or an arc of a circumference,
the solution of the recurrent system of equations is found in the form
of quadratures.

1. In a cylindrical coordinate system x, y and ¢ (see Figure) the
equations of three-dimensional rotational flow of a gas have the form
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Here the velocity components u, v and v in the directions of x, y
and ¢ and the speed of sound c are referred to the maximum value of
velocity in the gas; p is the pressure, p the density and x the ratio

of specific heats for the gas.

We transform (1.1) to a new system of coordinates according the the

equations

z = rcos® + =z, (@),
. 1.2
y = rsin® + Ry (@), P =¢

Here x = z,(9), y = Ro(¢) are the §
equations of a certain curve L, and ?
r and © are polar coordinates in the

plane ¢ = const with origin at points
of the curve L (see Figure).

Velocity components in the old and
new coordinate systems are connected
by the relations

u= v,c088 — v,sinf
" 8 T w=w (1.3)
v = v, sin@ 4 vy cos0,

where v, and vg are the velocity components in the r and 6 directions

respectively.

By means of (1.2) we obtain

74 sin6 4 d . a cos @ @
6r T80, T Ge 0y = sm0G T 5
] 0 B B 9 . . (1.4)
5$=%“BE;+T%’ B = x4 sin 0 — Ry cos 0

Here dots denote derivatives with respect to ¢ and primes with

respect to 0.

In the new coordinate system equations (1.1) take the form (q2
urz + sz)
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2. We seek the solution of system (1.5) in the form of series

o0 [} 0
n A n n
v,=2unr, ve—h]vnr, w=2wnr, S:E.S'nr 2.1)
n=0 n=20 n=(0 n==0

(uy=u, (6,9), v, =2,00,9), w,=w,(,¢),S,=S50,9)

Substituting series (2.1) into system (1.5) and equating coefficients
we obtain

3s; I a8, as;
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Equations (2.2) to (2.5) represent ordinary differential equations

with respect to the independent variable €@ with the parameter ¢,

3. For the zero-order terms in series (2.1) we have, with n = 0 in
(2.2) to (2.5)

ou N
(a_en - vo) (Bwy + Rgvg) = 0, (Bwy+ Ryvy) ’569 =0 (3.4)
dw du dv 1 —V?2a8
Roogs — (g5 + n30)B= g 36 B 0d=ul+od +u
v ou dv Oow,
Ryeqd _c'% — R, (uo 6—60 + g 6_(;,) =+ [B (co* — wo?) — Rgwov) a—-eo -
Ou, v, . .
— Bu, <uo 30 + v 8_0) + ctupRy= (e = (x — 1) (1 —Vy?))

From the first two equations of system (3.1) we find
vo = duy / 99, Sy = 8o (@) 3.2)
Then the third equation (3.1) reduces to the form

dw, B < '01;")_.0

30 R\t g (3.3)
The fourth equation also simplifies and splits into two
dv, B B 2
ut =0, (1 +7?:,) o — (vo+ E—wo) =0 (3.4)

Equation (3.3) can be integrated

B’ B zo \2 Ry\27'%
wo + ug R, " ToR,” Zowgt,  Zp= [1 + ('—Hn;) + (ﬁo‘;) ] (3.5
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This equation shows that the projection of the velocity w0+ = wo+(¢)
in the direction of the tangent to the line L does not change under
rotation of the stream about the curve L. Consequently for the zero-
order terms in series (2.1) there are two different kinds of solution:
we will distinguish the solution of type A if the zero-order terms of
series (2.1) satisfy the first of equations (3.4), and the solution of
type B 1f it satisfies the second.

Integrating equations (3.2) and (3.3) and the first of equations
(3.4), we obtain for the zero-order terms of type A the following ex-
pressions:

wo = wo (§)y So = o (@), Uy = goC05 (B — ), vy = — ggsin (8 — 9) (3.6)

Here 9 and & will be functions of the angle ¢. The solution (3.6)
describes in each plane ¢ = const & flow with constant velocity V0
directed at an angle 5(¢) to the x-axis. Subsequent terms of series
(2.1) will take into account both the nonuniformity of the oncoming flow
and the form of the stream surface on the line L.

Substituting relations (3.2) and (3.5) into the second equation (3.4),
we obtain for the determination of the coefficient uy of the solution of
type B the linear second-order equation

B2\2 /Ju,\2 . N ®$1

r(147) (Go) + @b e - r=3=1)
auo 0u0

— 2YBB’ (1 + BY) uy 3g -+ 278 (1 + BY) wy* Zo 35 — (3.7)

— 2B (1 + 1 B wg* Zoug + we*? 28 (1 +1B*) — (1 + B?) =0

The solution of this equation 18 the function

ug=Zy Wt B+ V1 —wo't V 1+ BieosP) (3.8)
B=1/V 7T ' [Z5 wn(0+ V)] < a0 (@), wn V= o / Ry

Here a () is an arbitrary function. From equation (3.2) we find

BB' V11— w,*? _
vy = Zg1 [—— wetB + —VT—;_-‘——‘B”;‘—COS B—1/Vr

Vicw: o ﬁ] (3.9)
Vit

Equation (3.7) and its solution are considerably simplified if in
place of the plane ¢ = const we seek the solution in & plane perpendicu-
1ar to the curve L at the given point. In order to transform to this
new plane we carry out the following change of the variable 6 and the

unknown functions ug, vy and Wyl
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_ Y Z, BB oy (340)

0 = e (O WL o= 207 (e B+ g
— BZ ’ \

up = Zo1 (B'wg* + V I+ Buyb), uvo=Zo“(w = vy F et — Py, w0’

Here the plus superscript indicates components of velocity and func~
tions in the new plane. Performing the transformation (3.10) in equa-
tions (3.2), (3.3) and (3.7), we obtain

dwot dvet d
R T I T

The solution of this system is the functions

ugt = VIi—wgcos (V10" + ap),  wgt = wg* (9) (3.12)
vt = — nLaze= w,,*:2 sin (1/V y0+ + ao)

S0 = So(¢) also remains valid, because the entropy does not depend
upon the choice of coordinate system.

For wo+ = 0 relation (3.12) agrees with the well-known Prandtl-Meyer
solution [1], representing a centered expansion wave in plane flow; con-
sequently the solution of type B represents a three-dimensional expan-
sion flow in the vicinity of the curve L.

If Vv 01 is the magnitude of the velocity ahead of the turning of the
stream, and the angle 6 is measured from the direction of the velocity
up to the turning of the stream at the line L then, taking (3.12) into
account, we have

V2 = ugl24 v 4wt =1 — (1 — w,*) sin® (1/V 70,5 + ap)
1701/1401 = tan Op* = — 1/V‘}mn (1/]/’? 90*1'-}- an)

From these relations we find

V'f Co1 Co1
By y———— mn—l
Vi—w' Vicwl =t e+ 1) (1 —

ag = sin™!

m

where €01 is the speed of sound. In order that a real function a, exists,
it is necessary that the inequality

1—w2— 1y (xs-H(L—VH =0

be satisfied, or
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wt SV Uy (64 D) Va2 — Yy (6 — 1) = Voy cos (3.13)

where Hy is the Mach angle ahead of the turning of the flow. Consequently
condition (3.13) shows that a solution of type B exists only if the Mach
cone issuing from a point of the curve contains no other point of the
curve; that is, the line L must be a "supersonic edge".

4. Integration of the system of equations (2.2) to (2.5) successively
for n =1, 2, 3, ... can be carried out by any numerical method. However
in the case when L is the arc of a circumference the equations simplify
considerably, and their solution can be found by quadrature.

If L is the arc of a circumference, B = B’ = o.

We extract from equations (2.2) to (2.5) terms with the unknown func-
tions u,, v, w, and Sn, but we designate the remaining terms, which are
known from the preceding solution, by ®n, Gn, Hn and Fn respectively.
Calculation gives

Auy ) , 1— V
Ryro (70-— — g} n <w0u'nRo 4 Rovgrnt Ry —5-% Sp| 4+ @ =0 (41)
as
oo 55 + nRugSy + G o= 0 (4.2)
) N
v Ry = 4 nBgugry + Hy == 0 (4.3)

% - 1 Ju ' Oy,
Hu[ (t—V 2)( -+ un>—vn<u0 ‘6()0_ + v 35" )-——

Aur v,
e e e — 1) (tten o A ) (S ue) —
du 0y du Az,
- Ty (“0 _5(?' + &g ae + uy, (390 + vp '7;0‘)} +

4 nR, [_-‘_M (1 — V@) uy — ugtun — vyligvn — woltgWn] + Fn =0 (4.4

Equations (4.2) and (4.3) are integrated independently of the other
equations. In the case of an expanding flow, using expressions (3.12)
for ug and vy, Wwe obtain

I}
4

8 G,
Sp = sin"sﬁ[l/r:_«F S sm"BHBdB + A ((P)]
"

B]

10 6 \ H
w, = sin ‘B[V1 = s sin";;lB dp + Bn(q)):l

(4.5
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where An and Bn are arbitrary functions. Substituting equations (4.1)
to (4.3) into equation (4.4) and using (3.12), we obtain

. ou (n+ 1)% 1+ %
sin 2P _6—0n_ - [W:T cos 2 + V——__——T-] up + Q=0 (4.6)
Here
& 2 1 — Vy? ®ug— —
Qn = ———“1 K w02 [Uou‘own (n‘— —6—) + nug O 0 Sn— nl 1:{:1" Fn]

The solution of equation (4.6) is the function

_B

5 Q,

Un = Y tn B [— V2 % Vs p ¥+ Ea (@ ] ($n = sin™2B cos™* ™)  (4.7)
e

is found from equation (4.1). Equation (4.6) and its

The value of v,
= 0 with the solution of Shmyglevskii

solution (4.7) agree for v, = S
[1] for axisymmetric supersonic flow.

In case A equations (4.2) and (4.3) have the solution

(]
o§ sm"“l (6 )dO + L. @ ]
: (4.8)

a0+ Ma (@)

8§p = sin™ (0 — 6)[

)
o& sxn"*l(ﬂ )

wy = sin™ (0 — 0) [
9,

From system (4.1) to (4.4) we find the linear equation for u,
t o, 1, u, . duy,
(coz — 5 '+ 5 g COs 24)) Ry g2 + nRyqq? sin 2% 35

1 —1
+ (n 4+ 1) Ryun [(n 1 1) <602 — qoz) — 25 g0t cos 2113-1 +P, =0  (4.9)

Here

o2 1— Vg2 Cot — o2 1 — Vy?
Pp=n(n—1) Ro“o;,:?(”’own+ _2“—051;> +’2702‘—0‘n<w0Hn+ W&_G’J +

2 2 p o,
(25— n) e+ TR (n o 1) (ot o)

vy?

Equation (4.9) is satisfied by the functions
(4.10)

]

Tn ™ ( Py 2

Up = y‘n[Rn +T'n& ;/-5 do — S (_jx _T?H_Il—d()) dﬁ}, Yn = gt (1 + 2 gm§m>
8, o Yn 00 m=1

_ 2 gin2 1 1 n+1
p= Lo MY, Tttt pateos 2 o -

o

(M—2)
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3
28, Tl n_+M°2) — 0 (\1 + 1 _1 MO"2_> [

n:—1
t

()= k) |+ e+

| s

The remaining g, are determined from the recurrence formulas

+nt+1 ‘ 1
b T g Bnca (14 ) 0+ ) (=) —

—Yennd DIt gy mFn—D(m—1) 4 @ —1)/4 =0 (m=34..)
The functions v, are then found from equation (4.1).

5. The coefficients of the series representing the solution of the
system of equations (1.1) in form (2.1) are determined to within arbi-
trary functions of the variable ¢, which must be found from the imitial
or boundary conditions. As an example we show in one such case a
possible way of finding the unknown functioms.

Let the flow ahead of the curve L be known, and turning of the flow
by a certain angle take place at the curve. We consider the case of ex-
panding flow. We represent the characteristic surface that passes
through L and corresponds to the flow ahead of the turning of the stream
by means of the series

0 - ap () Har(@) r+ ag @+ ... (5.1)

We also write the parameters of the flow on this surface in the form
of series; we choose as an example the component v,

= Bo (@) + B @r + Ba @) A .. (5-2)

On the other hand, v_ can be developed in a Taylor series

[vs

), B
1 (” s ) (6 — a,)’ (5.3)
o v 99 Ty o )

7

w.
1

From series (2.1) we find

4 . 7 a0
T N 9 upm m (5.4)
a6’ mop 09
and from (5.1)
Y A (o o]
; i\ \ N1 k
(6 —ag) = ( b airl> = (}J A% .ai],> r (5.5)
=1 k-1 i‘+iz+...+ij ===k

Substituting (5.4) and (5.5) into series (5.2), we obtain
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! u
b= - ) ( .m>0=a.( > ailaiz...aij) rmHE (5.6)

j=0 m=0 k=j R T

Equating coefficients of like powers of r in series (5.2) and (5.6),
we obtain the equation

AN 1 aU‘Jum
By=D — 2 ( L ) B ( 2 “il“i,---“r) (5.7)
~ 7N 907 Je=a, \, . , j

+k=n * fitiy .y =k

where the func@ions Bn'and a, are known, but in the expressions for the
derivatives 3(1)ul‘/361 there appear the unknown functions E, ..., E
En and derivatives with respect to 6 of En, ce En-l' so that from
equation (5.7) it is possible to find successively all the functions En.
The other derivatives of the functions An and Bn are also found in the
same way.

n-1°*

With the proposed method, using the solution of type A4, it is also
possible to seek a solution in the vicinity of a curve L when it is the
line of origin of a shock wave. The method may be used both for analytic
investigation and for numerical methods of solution of three-dimensional
supersonic flow of gas to find the solution in the vicinity of singular
points.

With regard to the convergence of series (2.1) it should be mentioned
that in the case of axisymmetric potential flow and analytic initial
conditions the convergence of these series was shown by Dorodnitsyn [2].
In the general case this question remains open.
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