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We consider the problem of finding the three-dimensional supersonic flow 
of an ideal gas in the vicinity of a curve L, at points of which there 
occurs a break in the streamlines. The solution of the three-dimensional 
equations of gas motion is sought in a special coordinate system in the 
form of a series in one of the variables with coefficients depending 
upon the other two variables. For the determination of the coefficients 

we obtain a recurrent system of ordinary differential equations. 

The equations for the zero-order terms in the series have two solu- 

tions, which correspond to flows with expansion or compression in the 
vicinity of the curve L. 

In the case when L is a circumference or an arc of a circumference, 
the solution of the recurrent system of equations is found in the form 
of quadratures. 

1. In a cylindrical coordinate system X, y and Q (see Figure) the 
equations of three-dimensional rotational flow of a gas have the form 

(l-~j~+(l_~j~+(l_~)Q~_ 

-~(~+~j-~(~+~~)_~(~+t~~)+$=o 
au au 1 au aw I- v2 as 

Vay ax ( -- 1 ( +w yacp -_ 
ax 1 =2xaZ: 
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u(~+~_d~)_u(~~-~)=~S~ 

iW c2 = l/z (x - 1) (1 - vz) 
Ual:l 

-Ls~+waS-O y acp- ’ s = 109 (p / P*) $ const 
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Here the velocity components u, v and v in the directions of X, y 
and Q and the speed of sound c are referred to the maximum value of 
velocity in the gas; p is the pressure, p the density and K the ratio 
of specific heats for the gas. 

We transform (1.1) to a new system of coordinates according the the 
equations 

5 = r c0sO + z. (cp), 

y = rsin0 + R,(q), 9 =‘p 
(1.2) 

Here x = x0(~), y = Ro(~) are the 
equations of a certain curve L, and 
r and 6 are polar coordinates in the 
plane Q = const with origin at points 
of the curve L (see Figure). 

Velocity components in the old and 
new coordinate systems are connected 
by the relations 

u = V~ cos0 - v, sine, 

v = 2’r sin@ + 27, cos6, 
w--w (1.3) 

where v,. and ~6 are the velocity components in the r and 6 directions 
respectively. 

By means of (1.2) we obtain 

d a sin 6 f3 a 
az=COSear--- 

case a 
r set ay=sine$+-- r ae 

a a a B a -=-_ 
afT av Blap-t,x B = x0’ sin 8 - R; cos O 

(1.4) 

Here dots denote derivatives with respect to Q and primes with 
respect to 0. 

In the new coordinate system equations (1.1) take the form (g2 = 
Vr2 + “62) 

i 

au 
W _-B’% 

ae ) - (R, + r sin e) 
( 
w $ + u, i-w as 

$?+Fz+ ) 
(1.5) 
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v,,R, + Bw 

+ [-$--U,)[~+v,(+.+sin6)] -wwZsin6=0 

r 
-& ve sin fJ $ $ iv,. (I?, -f r sin 0) - B’w] f.& + w e = 0 

(R, + r sin 0) v,, ar aw +-$(~+~$.)+($+sin~)vs~- 

~+sinO)[c2(v,+~)-..T&~-~~O+!!$]+ 

+ $ [ (c2 - w2) ; - f g] f (R, + 
8V 

c~-.L----wv VP aqz 

ar 2 ar 

- B’ [($ - ~2) $ - $%I+ (9 _ w2) g - 
$g+ c2(vrsine+ V~COS~)= 0 

2. We seek the solution of system (1.5 ) in the form of series 

00 cc c?J 00 

v, = 2 un rn, ve = 2 v, P, W = 2 wn rn, S = P S rn d n (2.1) 
n=o Tl=O n==a TIE0 

(S = u, (6, 9, v, = v, (6, cp), wl? = wtI (e, cp), s, =s (8, cp)) 

Substituting series (2.1) into system (1.5) and equating coefficients, 

we obtain 

2 (R,ci d; Bw~) 2 + 2 r 
asj CW, 

I+j=n 
i+j=n_-l ~vi sin 0 m f (j+l)(@, - B’WJ ~j+~ iuli -1 + 

+ 2 (if 1) ‘iSj+l sin 8 = 0 (2.2) 
i+j=n-z 

2 (2 - vi) (BWj +- R,oj) + x {w. [ 2 - B’(l + /‘) u. 1 34-l - 
(+j=n i+j+k=n-1 

_wjsin6]__R~~jk+- (~~--z~i)Vjsin6}- 2 aijrrsin6==0 (2.3) 

i+j+k=n-2 

7 

2 F 

B (1 - Vij) a’, 

2x 
x 

I 
+ 2 [q -fi 1) R,ui"lj+, i 

i+j+k=n f+j+k=n-1 
C?W. 1 aQij +vi+sin6----- 

I - vij as, 

2 a’p 
_ - a’p -f (i + 1) B’ qij+l + B’ ~ 

2% 
(k-f- 1) Sk+l + 

+ wi (uj sin e + vj cos e)] + x v + 1) Uiwj+l sin e = 0 (2.4) 

itj=n-2 
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+ 

i+jtk=n-1 

- B’ (k + f) r+ (1 - Vij) wk+l -wiwjwk+l - wiqjk+l] + 

+ ‘+ (1 - Vij) (upin O + vk cos 0) + 
’ i+j+Zn-2 

cijk sin O = 0 (2.5) 

aijk = (k f 1) 
i 
WiWk+l $ vivk+l $ 7 'k+,)t 

Qij = UiUj + ViVjr 

b ijk 
--+_ 1) (1 _Vij) (G+uk) “2” $.I;igv” wiwj 

cijk = (k + 1) [‘I, (X - 1) (1 - Vij) uk+l - “iqjk+l - wi”jwk+ll 

Equations (2.2) to (2.5) represent ordinary dirrerential equations 

with respect to the independent variable 8 with the parameter 9. 

3. For the zero-order terms in series (2.1) we have, with n = 0 in 

(2.2) to (2.5) 

(Bw, + R,q,) = 0, (Bw, + R,v,) $j = 0 (3.1) 

8W” 
%vo,e - ( 

au0 UOae+ L>Oa$ 
1 

B=iq$$ (V,z = uij f voa + wd) 

au0 au0 au, 
Rocoa x - ROVO u. m + v. ae ( 

- 
) 

awe 
+ [B (co2 ---~a~) - R,w,] x - 

au 
-Bwo(uoa~+vo-$ + +,*u,,~,= 0 (co2 = l/e (x - 1) (1 - V&) 

From the rirst two equations 0r system (3.1) we find 

vo= auo/ae, so = so ((P) (3.2) 

Then the third equation (3.1) reduces to the form 

++-(uo+g+o 
The fourth equation also simplifies and splits into two 

(3.3) 

au0 
u,-J-,,=o, (I.&,,- (/I,+ gyo,“=o 

Equation (3.3) can be integrated 

(3.4) 

B’ B 
too + u. - - r. x- - zou~o+, 

Ro 0 
2, = [i + (%)z + gj”]” (3.5) 
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This equation shows that the projection of the velocity we+ = we+(P) 
in the direction of the tangent to the line L does not change under 

rotation of the stream about the curve L. Consequently for the zero- 

order terms in series (2.1) there are two different kinds of solution; 

we will distinguish the solution of type A if the zero-order terms of 

series (2.1) satisfy the first of equations (3.4), and the solution of 

type B if it satisfies the second. 

Integrating equations (3.2) and (3.3) and the first of equations 

(3.4). we obtain for the zero-order terms of type A the following ex- 

pressions: 

LL’O = wo (cp), so = so (917 uo=~ocos(6-~), v,=--qOsin(13--86) (3.6) 

Here q. and 6 will be functions of the angle 0. The solution (3.6) 

describes in each plane q~ = const a flow with constant velocity VO 

directed at an angle 6(q) to the x-axis. Subsequent terms of series 

(2.1) will take into account both the nonuniformity of the oncoming flow 

and the form of the stream surface on the line L. 

Substituting relations (3.2) and (3.5) into the second equation (3.4), 

we obtain for the determination of the coefficient ue of the solution of 

type B the linear second-order equation 

- 2B’ (1 + 7 P) W$ z,u, -t lug +*zox(l +rZP) - (1 f B”) = 0 

The solution of this equation is the function 

__... . - 
u,=Z,-l(W,+B’-j- ~l-wo+*v/1+ B’COSB) (3.8) 

fl = I/ v/r tan-’ [z,-’ tan (6 + 41 if- a0 of% tm v = to’ J R,’ 

Here a,,(q) is an arbitrary function. From equation (3.2) we find 

vo = 20-l - ‘“o+B -+ 
BB’ 1/i - wo+* 

v1 + BB (3.9) 

Equation (3.7) and its solution are considerably simplified if in 

place of the plane 9 = const we seek the solution in a plane perpendicu- 

lar to the curve L at the given point. In order to transform to this 

new plane we carry out the following change of the variable 6 and the 

unknown functions me, vO and we: 
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e+ = tan-’ [2,-l t.,(f3 + Y)], v. = z,-1 + vo+ - Bu’o+ + & uo-; (3.10) ( 
u. = Zo-1 (B’w,+ + 1/l + BZ uo+), U’o = q-1 

Here the plus superscript indicates components of velocity and func- 

tions in the new plane. Performing the transformation (3.10) in equa- 

tions (3.2), (3.3) and (3.7), we obtain 

aw,+ 
- =o 

ho+ 
a+ ’ uo+=m 9 

au,+ 2 
rae+ + ( ) IL@+2 + wa+2 - i = 0 (3.11) 

The solution of this system is the functions 

u$ = ‘r/l - wo+%cos (l/f/r@ _t a&J, wJ+ = w$ (rp) (3.12) 
~. 

V$ = - l/l/r Jfl - w$~ sin (l,l~r~6+ + aJ 

S, = S,(q) also remains valid, because the entropy does not depend 

upon the choice of coordinate system. 

For w,,+ = 0 relation (3.12) agrees with the well-known Prandtl-Meyer 

solution [d, representing a centered expansion wave in plane flow; con- 

sequently the solution of type B represents,a three-dimensional expan- 

sion flow in the vicinity of the curve L. 

If “l-l, is the magnitude of the velocity ahead of the turning of the 

stream, “and the angle 8+ is measured from the direction of 

up to the turning of the stream at the line L then, taking 

account, we have 

VG = 14,~” + voT2 + w,:” = 1 - (1 - wo+‘) sir? (l/i/r 8; + 

vo;/ uO; = t*n eo+ = - ul/?~4il/~ 60: + 4 

From these relations we find 

the velocity 

(3.12) into 

a,) 

where co1 is the speed of sound. In order that a real function a,, exists, 

it is necessary that the inequality 

1 - 42 - ‘/a (x j- 1) (1 - V”$ > 0 

be satisfied. or 
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where ~1 is the Mach angle ahead of the turning of the flow. Consequently 

condition (3.13) shows that a solution of type 5 exists only if the Mach 

cone issuing from a point of the curve contains no other point of the 

curve; that is, the line L must be a “supersonic edge”. 

4. Integration of the system of equations (2.2) to (2.5) successively 

for n = 1, 2, 3. . . . can be carried out by any numerical method. However 

in the case when L is the arc of a circumference the equations simplify 

considerably, and their solution can be found by quadrature. 

If L is the arc of a circumference, B = R’ = 0. 

We extract from equations (2.2) to (2.5) terms with the unknown func- 

tions a,,, v,, w and S,,’ but we designate the remaining terms, which are 

known from the ireceding solution, by on, C,,. Hn and Fn respectively. 

Calculation gives 

Equations (4.2) and (4.3) are integrated independently of the other 

equations. In the case of an expanding flow, using expressions (3.12) 

for u,, and v,,, we obtain 

(4.5) 



Three-dimensional rotat tonal supersonic j low 1665 

where An and Bn are arbitrary functions. Substituting equations (4.1) 

to (4.3) into equation (4.4) and using (3.121, we obtain 

1 
sin 2p 

au, (n+ I)%-- 
- -- a~ = v/xz 1 u, + 52, 0 (4.6) 

The solution of equation (4.6) is the function 

The value of V, is found from equation (4.1). Equation (4.6) and its 
solution (4.7) agree for con 
[ll f 

= S,, = 0 with the solution of Shmyglevskii 
or arisymmetric supersonic flow. 

In case A equations (4.2) and (4.3) have the solution 

e 

S, = sin” (6 - 6) 
e. 

sin”+lG(; _ o) d6 + L (cp) ] 

e (4.8) 

w n 

From system (4.1) to (4.4) we find the linear equation for un 

R, ‘2-t nRoqo2 sin 29 $$ $- 

- G qo2) - v qo2 cos 2q + P, = 0 (4.9) 

Here 

P, = n (n - 1) Rouo $ 
i 

wow, + ~,,)+@+n(woH,+~c,)$ 

+ ($ - n) UO@, + y $$ + (n + 1) (F, + troH,) 

Equation (4.9) is satisfied by the functions 

(4.10) 

%=Yn[R, +Tj 5 dO-[O($~O+$de)d~]7 

0. 
Yn = gntl (1 +,~&,p) 

E 1 sin2 1 1 - n-t 1 = Mo2 $ 
M$-1 ’ 

T=C,~-~qo~+~qo*COS2~, g1==- 4 (MO*- 2) 
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n+3 
%a (1 - M02) - 41 \ iI -1 L--J [+ 1 - Al,2 (n + 2) - $ (n + 1) ] + (n + 1) + 7 = O 

The remaining gm are determined from the recurrence formulas 

m(m3-n+ 1) 
&I I- MO2 - gm-I (1+&g [(n + m ) (m - ‘i,) - 

- I,‘(. n (n -f i)] + g,_, ](m + n - 1) (m - 1) f (n” - 1) / 41 = 0 (m = 3, 4, .) 

The functions V, are then found from equation (4. 1). 

5. The coefficients of the series representing the solution of the 

system of equations (I. 1) in form (2.1) are determined to within arbi- 

trary functions of the variable 9, which must be found from the initial 

or boundary conditions. As an example we show in one such case a 

possible way of finding the unknown functions. 

Let the flow ahead of the curve L be known, and turning of the flow 

by a certain angle take place at the curve. We consider the case of ex- 

panding flow. We represent the characteristic surface that passes 

through L and corresponds to the flow ahead of the turning of the stream 

by means of the series 

We also write the parameters of the flow on this surface in the form 

of series; we choose as an example the component v r 

2’7 BO t(r) + PI (‘F)r + I% (cp) r2 + . . . (5.2) 

On the other hand, t, r can be developed in a Taylor series 

From series (2. 1) we find 

(3.4) 

and from (5. 1) 

(0 -aa)j = (2; airi)’ ~- ; (2 li,li, . . . ai, ( ,) rh (5.5) 
i =1 k--l i,+ir+...+i, -Ii 

Substituting (5.4) and (5.5) into series (5.2), we obtain 
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vr = Ii -+ i, Zj (Q)_ (i,+i,+?;i, =k ailaiz. . .a+) rm+k f5@ 
i=o . . 3 

Equating coefficients of like powers of I- in series (5.2) and (5.6), 
we obtain the equation 

where the functions P”,and ai are known, but in the expressions for the 
derivatives a(j) uII /%I there appear the unknown functions El, . . ., E,_1, 
En and derivatives with respect to 8 of E,,, . . . , E,,_l, so that from 
equation (5.7) it is possible to find successively all the functions En. 

The other derivatives of the functions A,, and B, are also found in the 
same way. 

With the proposed method, using the solution of type A, it is also 
possible to seek a solution in the vicinity of a curve L when it is the 
line of origin of a shock wave. The method may be used both for analytic 

investigation and for numerical methods of solution of three-dimensional 
supersonic flow of gas to find the solution in the vicinity of singular 
points. 

With regard to the convergence of series (2.1) it should be mentioned 
that in the case of axisymmetric potential flow and analytic initial 
conditions the convergence of these series was shown by Dorodnitsyn [21. 
In the general case this question remains open. 
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